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1. STUDY OBJECTIVES

During its cruise phase the Pioneer F/G spacecraft operates nomi-

nally at a spin rate of 4.8 rpm. Spin rates significantly different from

the nominal value are of interest in future missions of spacecraft of the

Pioneer series for a variety of objectives. Low spin rates are desirable

to permit longer exposure of imaging sensors and radiometers in the

observation of faint targets. High spin rates are advantageous in lending

greater stability to the spinning spacecraft against orientation changes

during high-thrust propulsive maneuvers, e.g., at planetary orbit inser-

tion, and thus reduce thrust pointing errors. In any case the departure

from the nominal spin rate is to be of fairly short duration as an added

operational mode.

The objectives of this study are to investigate the feasibility of

executing major changes upward or downward from the nominal spin rate for

which the Pioneer F&G spacecraft was designed, and to determine the

extent of system and subsystem modifications required to implement these

mode changes in future spacecraft evolving from the baseline Pioneer F&G

design.

In the previous study of a Pioneer Jupiter orbiter (Reference 1)

the modification of the baseline Pioneer F&G spacecraft required to accom-

modate a limited range of spin rate variations were investigated. In the

present study these results are to be re-examined and updated for an

extended range of spin rate variations for missions that include outer

planet orbiters, outer planet flyby and outer planet probe delivery.

However, in the interest of design simplicity and cost economy, major

modifications of the baseline Pioneer system and subsystem concept are to

be avoided. Tasks to be performed in this study include the following:

a) Define and analyze techniques for providing spacecraft spin rates
from zero to 45 rpm. Also for changing the spin rate from a
nominal five (5) rpm to zero (0) rpm for continuous periods of
up to twelve hours, 20 times during a mission.

b) Define the required spacecraft modifications and the method
of accomplishment.
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c) Evaluate effect of proposed modifications on spacecraft
performance.

d) Define required subsystem modifications.
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2. FUNCTIONAL REQUIREMENTS AND CONSTRAINTS

This section outlines objectives, constraints and functional require-

ments that are to be met by operating future Pioneer-class spacecraft at

off-nominal, high or low spin rates. Such conditions occur in the outer

planet flyby, orbiter and probe delivery missions previously studied by

TRW (References 1, 2 and 3). The section also includes a summary of per-

tinent configuration and mass property data of the Pioneer orbiter space-

craft that will be used in Sections 3 to 5 in the discussion of spin

dynamics and control requirements.

2.1 SPIN RATE VARIATIONS IN AN ORBITER MISSION

Figure 2-1 illustrates the sequence of spin rate variations in a

Jupiter orbiter mission, as defined in Reference 1. After the initial

despin maneuver and appendage deployment which reduces the spin rate to

the nominal value of 4.8 rpm, the spacecraft maintains this rate during

the cruise to Jupiter, except during high thrust midcourse maneuvers when

a higher spin rate is desired (10 rpm in this example) to assure accurate

thrust vector pointing. A high spin rate is also used during the Jupiter

orbit insertion, and subsequent orbit trims and plane change maneuvers.

During the orbital phase the spin rate is periodically reduced to 2 rpm

for improved TV camera image resolution whenever the spacecraft is in a

favorable viewing position close to the planet. After the periapsis

passage the spacecraft resumes the normal operating mode at a spin rate

of 4.8 rpm. With highly eccentric orbits typical for this mission, and

orbit periods that may exceed 30 days, the spacecraft will actually spend

almost all of the orbital mission phase in the normal mode.

Figure 2-2 shows a 14.2-day Jupiter orbit with dimensions of 2.3 by

45.1 Jupiter radii. Time markers along the trajectory indicate that a

12-hour interval, starting at about 10 Jupiter radii, provides favorable

viewing angles for observation of the planet's bright side and terminator

region. During this time the spacecraft will operate in the low spin rate

mode. Opportunities for close-up observation of some of Jupiter's moons

(lo and Europa) also may occur during this time. A shift or extension of

the low-spin-rate period is required in the case of encounters with

Ganymede or Callisto.
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SPACECRAFT SPINNING AT 60 +6 RPM SEPARATED FROM CENTAUR -
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Figure 2-1. Spin Rate Profile in Orbiter Mission
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Figure 2-2. Jupiter Orbit with Satellite Encounters
2.3 x 45.1 R Orbit (Period 14.22 Days)

2.2 LOW SPIN RATE OBJECTIVES

Operation at a low spin rate is desired for the benefit of some of

the scientific observations:

* To increase the exposure of the TV image system, and of
photometers, radiometers or spectrometers to faintly
illuminated or radiating objects

* To reduce image smear in the TV system and thus improve
resolution

To increase mass spectrometer or impact detector dwell
time in a given spatial sector.

Some unfavorable aspects associated with scan rate reduction must be

weighed against these advantages (see below).

Actually, the preferred spin rate for each sensor depends on a

tradeoff of several parameters. This is best illustrated by considering

two types of image systems, a vidicon camera and a line scan camera.

2-3



To provide a required minimum exposure time, tmin , for each resolu-

tion element Ere s the spin rate must be reduced to a value not exceeding

a limit wL' where

Eres

W tL tmin

Figure 2-3 shows this spin rate limit as function of Eres with minimum

exposure time as parameter. Shaded regions delineate the resolution

range of typical image systems, radiometers and spectrometers. As an

extreme example the Mariner 1971 high resolution vidicon camera with

Eres = 0.02 mrad and a shutter speed range of 3 msec to 6 sec, is indi-

cated on the left. To use such a camera on a spin-stabilized rather than

three-axis-stabilized spacecraft, the spin rate would have to be reduced

to the range of 7 x 10-2 to 3 x 10-5 rpm depending on the required

exposure.

A phototransistor line scan camera of the type proposed for applica-

tion on Pioneer (Reference 4) with Eres = 0.1 mrad and exposure times

ranging from 0.2 to 10 msec, is indicated to the right of the Mariner

vidicon camera. The corresponding spin rates range from 0.1 to 5 rpm.

For observation of the outer planets and their satellites the required

exposure time is of the order of several milliseconds for the line scan

image system, even for a reasonably fast optical system (e.g., 500 mm

focal length and f/3 aperture ratio).

The exposure time relation given above also provides a rough approxi-

mation of the effect of image smear, by defining the spin rate at which

the image smear equals one resolution element for a given exposure time.

Thus the data in Figure 2-3 can be used to determine the maximum spin

rate permissible from the standpoint of image smear limitation.

A possible disadvantage associated with large spin rate reductions

is the resulting increase in the time interval between samplings of ambient

phenomena where measurements depend on spacecraft orientation. For example,

with a relative velocity of 30 km/sec at the time of Jupiter periapsis

passage and a spin rate of 0.1 rpm, i.e., a sampling interval of 600 sec,

the distance traveled between samplings is 18,000 km (about one-quarter of

Jupiter's radius). Since at least two samples are required to measure
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Figure 2-3. Spin Rate Limit Versus Sensor Resolution
and Exposure Time

periodic phenomena, the spatial resolution of such phenomena would be ex-

tremely poor in this case, i.e., 0.5 Jupiter radii. Figure 2.4 shows the

"dimension" of resolvable features as function of spin rate (or sampling

interval) and relative velocity. At the nominal spin rate, with the re-

solvable feature size reduced to 750 km, no problem in the measurement

of ambient phenomena near Jupiter should be anticipated.

Further study is required to weigh the possible degradation at low

spin rates of in-situ measurements that depend on spacecraft orientation

against the desired gain in performance of the image system and other

2-5



remote sensors. In an extended orbiter mission the high and low spin rate

modes could possibly be used alternatively in successive close approaches

to the planet to meet both objectives.
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2.3 HIGH SPIN RATE OBJECTIVES

Operation at a higher than nominal spin rate may be required

To increase spin-axis orientation stability during high-thrust
maneuvers for greater thrust pointing accuracy and reduced
residual pointing errors

e To impart a higher spin rate to a planetary entry probe prior
to separation from the spacecraft bus (a) for reduction of tip-
off errors, (b) for greater probe stability until entry into
the atmosphere

* To increase the scan rate of scientific payload instruments
under special conditions.

Dynamic characteristics of increased spin-stability under the per-

turbing influence of thrust vector misalignment will be discussed in

Section 4. The stiffening effect of increased spin rates on flexible

appendages will also be discussed in that section.
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Spin rates greater than 5 rpm may be desirable for stability of

planetary entry probes. This would be achieved by spin up of the Pioneer

spacecraft bus to a higher than nominal spin rate, prior to probe separa-

tion. Actually in the recent TRW/McDonnell-Douglas study of the Pioneer

Saturn/Uranus entry probe mission (Reference 3) increased probe spin rate

was found to cause an undesirable prolongation of gyroscopically-induced

nutation during entry pitchover. However, a spin rate increase could

have reduced the probe separation tip-off angle error below the attained

value of 2.0 degrees, if necessary.

The third objective, increasing the scan rate of science sensors

under special conditions, relates to the measurement of ambient phenomena

at sufficiently short sampling intervals (see above).

The primary objective, namely improvement of thrust pointing sta-

bility and accuracy requires spin rate increases to 10 or 20 rpm. This

would occur typically six times.during the mission. A representative

sequence of high thrust maneuvers for a Jupiter orbiter mission is listed

in Table 2-1.

Table 2-1. AV Maneuver Sequence in a Jupiter Orbiter Mission

Burn Event Days from AV Required Burn Time
No. venLaunch (m/sec) (sec)

1 Midcourse correction 5 82 190

2 Orbit entry at first 820 900 1684
periapsis

3 Plane change 834 350 522

4 Orbit time trim at 870 77 112
second periapsis.

5 Apoapsis reduction 909 400 513
at third periapsis

6 Orbit time trim at 925 30 34
fourth periapsis

Total Required 1850 3055
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None of the maneuvers exceed a burn time of 30 minutes. Neverthe-

less, an extension of the high-spin-rate operation may be desirable, to

permit ground verification of successful spin-up before commanding the

engine to fire, the communications delay being 1.7 and 3 hours at Jupiter

and Saturn, respectively.

2.4 REFERENCE PIONEER SPACECRAFT CONFIGURATION
AND MASS PROPERTIES

The configuration and mass properties of the Pioneer Jupiter orbiter*

(see Reference 1) will be used in the following sections as a basis for the

analysis of spin dynamics, acceleration loads, propellant requirements,

etc. This configuration is shown in Figure 2-5. Mass properties are

listed in Table 2-2. For comparison the corresponding characteristics of

Pioneer F&G are also listed.

Table 2-2. Jupiter Orbiter - Mass Properties Estimate
(Reference 1)

Weight Moment of Inertia I I

eight (in.) (i (slug-feet2) K =(KxK)1/2

0b)I I I
Ix Iy Iz

At TE 364-4 ignition 4403 2 0 -6.0 1282 1254 385 0.30 0.31
(spacecraft stowed (2873) (0) (-24.5) (484) (476) (185) (0.38) (0.39)
plus TE 364-4 and
adapter)

At TE 364-4 burnout 2286 0 21.1 427 399 310 0.73 0.78
(spacecraft stowed (756) (0) (-5.9) (181) (173) (109) (0.74) (0.78)
plus burnout motor
and adapter)

At separation - 2069 0 26.8 251 224 298 1.19 1.33
stowed (spacecraft (564) (0) (19.2) (71) (63) (101) (1.4) (1.6)
stowed less motor
and adapter)

At start of life - 2069 0 26.8 840 308 971 1.16 3.15 0.58
deployed (564) (-6.3) (19.2) (287) (188) (443) (1.5) (2.3) (0.86)

At end of life - 887 0 37.0 746 214 859 1.15 4.01 0.68
deployed (504) (-7.1) (19.4) (287) (187) (442) (1.5) (2.3) (0.86)

1Longitudinal center of gravity from separation plane

2Pioneer F mass properties. in parentheses

The designation Pioneer Jupiter orbiter used here always refers to the
larger configuration (Configuration 2) defined in the reference study,
being more representative of advanced Pioneer spacecraft designs than
the small Configuration 1.
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The large spin moment of inertia (Iz) that characterizes the orbiter

configuration is similar to that of the outer planets Pioneer and Saturn/

Uranus spacecraft bus. Thus the spin-up and despin dynamics requirements

of this class of Pioneer spacecraft are comparable. In all cases the

addition of heavier RTG's contributes a major part of the increased spin

moment of inertia.

The addition of a 20- to 25-pound deployment counterweight at the

tip of the magnetometer boom, also a major contributor to the increased

Iz value, is a general requirement in Pioneer configurations, with RTG

booms mounted 120 degrees apart, that carry large added structures such

as a propulsion stage or entry probe. These added structures shift the

spacecraft c.g. to a z-axis position significantly below the deployment

plane of the three appendages and thus necessitate the deployment counter-

weight addition for control of the principal axes of inertia.

In considering required modifications of the system and subsystems

to implement the high and low spin rate modes of operations, this study

will generally refer to Pioneer F&G as a baseline. However, it will also

make use of design changes already adopted for the Pioneer orbiter, outer

planet and probe mission configurations. These include the RTG and power

system changes, the use of X-band, the use of an auxiliary radial thruster

pair, and the addition of an add-on equipment bay in some of the

configurations.
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3. EFFECTS OF SPIN RATE REDUCTION

The reduction of spin rate from the nominal speed of 4.8 rpm has two

major effects upon the attitude control subsystem (ACS). First, the reduc-

tion decreases the angular momentum so that speed insensitive disturbance

torques acting normal to the spin axis have a proportionally greater effect

of precessing the spin axis direction. Second, the Pioneer F&G ACS was

designed to operate within a range about the nominal spin rate. Spin speed

outside this operating range will necessitate modifications to units and

assemblies with the number of required changes increasing as spin speed

operating range is broadened.

3.1 DISTURBANCE TORQUE EFFECTS

The predominant attitude disturbances in a planetary orbit are caused

by gravity gradient and magnetic torques. These disturbances have their

greatest effect near periapsis.

The gravity gradient torques on a spacecraft expressed about the x,

y, and z body axes are:

3p
Tggx R3= (Iz -ly) rby rbz

3p.

ggy R3  x - I) rbz rbx

Tggz = - (Iy - Ix) rbx rby

where

Aj = gravitational constant of the planet

R = distance from planet's center to the spacecraft
center of mass

Ix , y' I z = principal moments of inertia of the spacecraft

rbx9 rby, rbz = direction cosines of the radius vector R
(in spacecraft coordinates)
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Notice that these torques vary as the inverse cube of the radial distance

from the planet center and depend upon the differences in moments of

inertia. With each orbital pass the angle between the spin axis and the

radial vector will vary. Also, spin about the z axis will introduce

periodicity in the projection of the radial direction on the body axes.

A magnetic moment on the spacecraft is caused by the interaction of

the planet's magnetic field and the spacecraft magnetic field. The re-

sultant torque is

T =MxBm

where

S= spacecraft magnetic dipole moment

B= planet's magnetic field vector

The strength of the field varies also inversely as the cube of the radial

distance between the spacecraft and the planet's center.

The combined effect of these two disturbances was evaluated for the

case of a Jupiter orbiter (Reference 1) assuming moments of inertia and

magnetic properties of Pioneer F/G. As a worst case example a skimmer

orbit was selected; a magnetic field strength of 10 gauss at Jupiter's

surface was assumed. The maximum precession per orbital pass induced by

each perturbing effect was combined in an RSS-sense with an initial

pointing uncertainty of 0.2 degree (conscan dead zone). The resulting

change in pointing angle is shown in Figure 3-1.

Precession buildup is slight at the higher spin speeds, e.g., >3 rpm,

and becomes more pronounced as the speed drops, with approximately 0.6 de-

gree pointing error at 1 rpm. Below this speed the precession rapidly

increases with further speed reduction.

Permissible error limits for S-band and X-band operation are indi-

cated in the graph. Below approximately 1.25 rpm, the spin axis preces-

sion will exceed the error limit for X-band. Without momentum augmentation,

this rate would be the minimum suitable spin speed. To permit operation at

lower spin rates an ungimballed momentum wheel will be required.
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Figure 3-1. Spin Axis Precession from Magnetic
and Gravity Gradient Disturbances
at Low Spin Rates

3.2 NUTATION DAMPING

Another impact of operation at low spin rate involves the performance

of the nutation (wobble) damper. The Pioneer F&G design provides a time

constant of 10 minutes or less at 4.8 rpm. The time constant would rise

to 100 minutes at 2 rpm. This is illustrated in Figure 3-2. A second

curve in this diagram shows the increased effectiveness of the wobble

damper due to addition of a large increase in tip mass (deployment counter-

weight) on the magnetometer boom in the case of the outer planets Pioneer.

(Similar performance is anticipated for planetary orbiters that require

the same mass balance for principal axis of inertia control as the outer

planets Pioneer design.) The time constant of the modified design is

approximately 14 minutes at 2 rpm.

Use of a momentum wheel for stability augmentation at spin rates

below 2 rpm would essentially hold the wobble damper time constant at the

same value as for the unaugmented spinning spacecraft at 2 rpm. If the
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Spin Rate

spacecraft spin rate is to be reduced to 1.5 rpm before turning on the

momentum wheel, the damper time constant would increase to about

20 minutes.

However, should it become necessary to reduce the low-spin-speed

time constant under these conditions, there exist several alternatives

for modification of the existing damper so as to tune its response charac-

teristics to provide optimum performance at low spin rate. This will be

discussed in Section 5.

3.3 EFFECT ON ATTITUDE CONTROL SUBSYSTEM OPERATION

The attitude control subsystem designed to operate near the nominal

spin rate at 4.8 rpm cannot accommodate the very low spin rates considered

here without requiring some modifications. The primary effect of low

spin rate operation is to cause a longer bit stream to continue per revo-

lution in several subassemblies of the control electronics assembly and

the conscan signal processor, as well as in the roll attitude timer and

spin period sector generator of the digital telemetry unit. This would

cause an overflow of bit registers and counters in these units unless

their capacity is increased. In addition, the exposure time of the sun

sensor assembly and star reference assembly would be increased with a

resulting loss of accuracy of reference pulse definition. Table 3-1

lists the minimum tolerable spin rate at which the various subassemblies

can operate and indicates the required type of modifications to assure

functioning if spin rates are further reduced.

3-4



Table 3-1. Unit/Assembly Modifications with Spin Rate Reduction

Modification
Minimum

Unit/Assembly Tolerable Increase Perform
Spin Rate Register Equipment

(rpm) Lengths Test

Digital telemetry unit 1.875

Roll attitude timer x
Spin period sector generator x

Control electronics assembly 3.75

Star delay x
Star time delay x

Conscan signal processor 4.0 x

Sun sensor assembly 2.0 x

Actually, most of these modifications can be avoided if during the

short duration of low spin rate phases (a maximum of 12 hours per orbit)

these attitude control functions are not exercised and if roll reference

signals are received from a separate, free-running precision time clock.

This will be discussed in Section 5. However, omission of conscan opera-

tions and attitude correction maneuvers during this time interval requires

that pointing errors be measured and corrected prior to initiation of each

low spin rate phase and that no new pointing errors be introduced through

uncompensated precession torques as a side effect of the despin maneuvers.

Methods for elimination of precession coupling will also be discussed in

Section 5. The inhibition of attitude control related spacecraft func-

tions during periods of close approach to the planet or its satellites

when the spin rate is reduced permits maximum utilization of data handling

and telemetry channels in support of science data acquisition, particu-

larly image system data which generally constitute the major part of the

scientific data volume during each encounter.
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4. EFFECTS OF SPIN RATE INCREASE

4.1 REDUCTION IN POINTING ERROR DUE TO THRUST MISALIGNMENT

Temporary increases in spin rate from the nominal rate of 4.8 rpm

are required in orbiter missions to improve the accuracy of the orbit

insertion maneuver and in subsequent orbit trim and plane change maneuvers,

all of which are performed by using the main axial thruster.

The maximum pointing error accruing during the engine firing period

as well as the maximum residual error remaining after engine shutdown and

nutation decay vary in inverse proportion with the square of the spin rate.

Thus, an increase in spin rate to 10 or 15 rpm reduces the upper bounds on

these pointing errors by 75 to 90 percent. This is illustrated in Fig-

ure 4-1 which shows the reduction in maximum pointing errors achievable in

the case of the Pioneer Jupiter Orbiter (see Reference 1). These data were

obtained for a thrust level of 100 lbf and an RMS misalignment torque of

16.5 inch-pounds.

10

o
DURING MANEUVER Figure 4-1. Upper Limits of

Pointing Errors due to AVZ _ Maneuvers at High Thrust Level
z (Misalignment Torque =

- \16.5 in.-lb)

_ -RESIDUAL (AFTER \
NUTATION DECAYS)'

0. I I
1 10 100

SPIN RATE (RPM)

4.2 ORBIT INSERTION THRUST LEVEL

The selection of the thrust level for the high-thrust engine involves

the following considerations:
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A high thrust level

* Increases the efficiency of the orbit insertion maneuver
by reducing the AV penalty ("gravity loss") associated
with non-impulsive orbital transfer

* Reduces the maneuver duration and engine burn time

However, it also

* Increases the wobble build-up due to thrust misalignment

* Increases the structural load on deployed appendages, and

* Increases weight and power requirements of the propulsion
system.

The tradeoff between the aV penalty due to finite thrust level and

structural penalty to accommodate high accelerations is illustrated in

Figure 4-2 for the case of the Pioneer Jupiter Orbiter. The center of the

figure shows acceleration levels sustained during firing of the high-thrust

80-
AV OF ORBIT INSERTION

60 MANEUVER, NM/SEC

Z 20

400

FULL
THRUST LEVEL AXIAL

(POUNDS) ACCELERATION
75 100 125 SUSTAINED

EMPTY

STRUCTURAL LIMITS:

3-) -- REINFORCEMENT -W i
RTGSUPPORTS /////////////////////////

) ___ _ REINFORCEMENT i
MAGNETOMETER BOOM I

i I 1 I I I I I
.04 .06 .08 .10 .12 .14 .16 .18

ACCELERATION (G) 37

Figure 4-2. Thrust Level Considerations
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engine, with the Tower limit occurring when the tanks are full and the

upper limit when they are empty. Thrust levels of 75, 100 and 150 Ibf are

illustrated. At the top of the figure is seen the aV penalty for an orbit

entry maneuver of given magnitude at a close periapsis. At the bottom are

seen accelerations tolerable by Pioneer F&G deployed structure as it is

now designed, and if straightforward reinforcement is applied. The thrust

levels shown will incur zV penalties of probably no more than 20 to

30 meters/second (for orbit entry maneuvers up to 800 m/sec), and struc-

tural penalties are modest.

In the Jupiter Orbiter study (Reference 1) a 100-pound orbit inser-

tion thrust was selected as a result of these tradeoffs and because several

applicable engines with that thrust level are available from previous

flight prograins, i.e., engines built by TRW and Bell Aerosystems for use

in USAF spacecraft, and the Marquardt R4-D engine used in the Apollo

program.

4.3 STRUCTURAL LOAD EFFECTS OF INCREASED SPIN RATE

4.3.1 Interaction with Axial Loads

The axial loads on spacecraft appendages induced by high thrust

application interact with the radial loads caused by the centrifugal effect

due to spinning. This interaction becomes more pronounced as the spin

rate is increased and leads to an effective stiffening of the deployed

appendages against bending due to axial spacecraft accelerations. Fig-

ure 4-3 schematically illustrates the stiffening effect at low and high

spin rates as a result of the vector combination of the axial (F ) and

radial (Fr) reaction forces that are applied at the appendage end masses.

This is discussed in greater detail in Appendix A. Typically, the deflec-

tion of the magnetometer boom due to a 0.1 g axial acceleration is reduced

by about 50 percent if the spin rate is increased from 4.8 to 10 rpm.

MAGNETO METER BOOM RTG BOOM

Sb RADIAL
a a LOAD

a - LOW SPIN RATE AXIAL a b
b - HIGH SPIN RATE I LOAD

Figure 4-3. Effective Stiffening of Appendages due to Increase in
Spin Rate (Schematic)
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The interaction also tends to keep the tip deflection of the mag-

netometer boom and the RTG booms approximately equal, so that asymmetry

of mass distribution due to boom deflection, and hence tilting of the

principal axis of inertia is minimized. Preliminary analysis shows that

the worst-case tilt angle occurring for a 100 lbf thrust and empty pro-

pellant tanks is about 0.5 degrees at 10 rpm and only about 0.25 degree

at 15 rpm.

Increasing the spin rate also has the advantage, from a structural

load standpoint, of increasing the tensile stress in the guide rods of

the RTG deployment arms. Since the tensile load increases with the square

of the spin rate, the net compressive load acting on the lower guide rods

as a result of bending of the deployed structure due to axial thrust can

be greatly reduced, as illustrated in Figure 4-4. Thus, the safety margin

of these long, slender rods against buckling is effectively increased. A

RIG F

r

LOAD DUE TO F DUE TO Fr a
UPPER ROD TENSION
INCREASED DUE TO F a

(2 RODS)

LOWER ROD COMPESSION
DECREASED DUE iO F -

(SINGLE ROD)

Figure 4-4. Tensile and Compressive Loads
on RTG Guide Rods

preliminary analysis of this effect is included in Appendix B. Figure 4-5
shows the reduction of buckling loads with spin rate increase for three

levels of axial thrust. Under an axial load of 0.125 g corresponding to

100 lbf thrust and empty propellant tanks, and at the nominal spin rate,

the lower guide rods of the Pioneer F/G design without added reinforcement
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Figure 4-5. Worst Case Net Compressive Load
on Lower Pioneer F/G Guide Rod
Due to Axial and Radial
Acceleration

would be subject to about 80 percent of the critical buckling load. This

is clearly unacceptable since the rod is under a combination of compressive

and bending stresses. The data in Figure 4-5 show that at 15 rpm the

buckling load is reduced to 50 percent of the critical value and to zero

at about 25 rpm, where the tensile load equals the compressive load on the
rod.

AFconservative estimate of bending str ess acting on all three guide

rods of the RTG deployment arm (see Appendix A) indicates that for thedimensions of the Pioneer F/G design a maximum stress of about 40,000 psi

could be reached under worst-case conditions at the critical attachment

points to the RTG assembly. A structural stiffening of the tubular rods

by increasing the wall thickness from 0.7 to 1.5 mm is proposed to reduce

the combined maximum stress to a safe value (for Aluminum 6061) of about

20,000 psi. This reflects in an acceptably small total weight increase of

less than three pounds.
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4.3.2 Structural Load on Magnetometer Boom

Structural loads on the long magnetometer boom due to higher spin

rates are negligible compared to the loads imposed by the initial deploy-

ment sequence. The increase in magnetometer boom tip mass by a 25-pound

deployment counterweight in probe-carrying and orbiter configurations 
of

Pioneer (not needed in Pioneer F/G) and the higher loads occuring during

simultaneous magnetometer boom and RTG boom deployment (see Reference 3)

necessitate a structural redesign of the boom, e.g., using a scissors-

type configuration as shown in Figure 4-6. This configuration can readily

accept the increase in tensile load imposed by a 15-rpm spin 
rate, and can

withstand the small bending load imposed by the angular acceleration due

to spinup ( 0.01 g at the tip mass). The reinforced structure can also

readily accept the axial acceleration load imposed during thrust phases,

particularly with the effective stiffening occurring at increased spin

rate.

BOOM PARTIALLY DEPLOYED

RESTRAINT CABLE

ENSOR FLANGE

WEIGHTED OUTER SEGMENT

BOOM FULLY DEPLOYED

Figure 4-6. Scissors Type Magnetometer Boom

4.3.3 Structural Loads on Spacecraft Center
and Propulsion Stage

The increase in spin rate to 10 or 15 rpm at various stages in the

mission profile is of no consequence regarding structural loads on the
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spacecraft center structure, the support structure of the propulsion stage

and the propellant tanks, since these structures must be designed to with-

stand the much larger centrifugal loads occurring at 60 rpm during the

launch phase, prior to spacecraft deployment.

Preliminary analysis shows that attachment fittings of the RTG

deployment rods and the magnetometer boom do not require reinforcement as

a result of spin rate increase only. The magnetometer boom fittings, how-

ever, require reinforcement due to the greater launch and dynamic deploy-

ment loads occurring in the proposed orbiter and probe-carrying Pioneer

configurations (References 1 and 3). RTG fittings may have to be

strengthened because of increased RTG mass.

4.4 EFFECTS OF INCREASED SPIN RATE OPERATION ON ELECTRICAL
SUBSYSTEMS AND PRECESSION MANEUVER REQUIREMENTS

An increase in spin rate above 4.8 rpm has its greatest effect upon

the precession maneuvering spacecraft operations. All attitude control

related subsystems will have essentially identical performance at the

higher spin rates. Register and counter lengths require no modifications,

although quantization errors will increase, assuming that the counter drive

pulse rates are maintained at their original values.

The conical scan signal processing accuracy is spin rate dependent.

The number of signal-averaging cycles is based upon the inertia properties

of the configuration and a signal-to-noise consideration. The latter will

require assessment at the higher spin rate, since the signal filtering

bandwidth would have to be expanded accordingly, with some degradation in

resultant signal-to-noise ratio expected. Moreover, the phase error in

processing is established prior to launch and a selectable (but permanently

fixed) program plug compensates for most of the phase error at the nominal

spin rate. An increase in spin rate to 15 rpm will introduce phase error

estimated at 20 to 30 degrees, which will result in a timing retardation

or advance in the precession thrust firing pulse while in the conscan

mode.

Open-loop precession maneuvers at the higher spin rate will require

proportionately more propellant since the angular momentum increases

linearly with spin rate.
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Actually, since operation at increased spin rate is restricted to

high-thrust propulsion events which are generally of short duration (as

discussed in Section 2.4), it is possible to avoid conscan operation and

precession maneuvers during these intervals. Hence, no requirement for

electrical subsystem modification related to high spin rate is anticipated.
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5. IMPLEMENTATION OF LOW AND HIGH SPIN RATE CAPABILITY

This section identifies system and subsystem modifications and

operating mode changes from the baseline Pioneer F&G design that are neces-

sary to provide low and high spin rate capabilities. As discussed in the

preceding sections, the operating range is to be.extended from the nominal

4.8 rpm spin rate to zero on the low side and to about 15 rpm on the high

side. Larger spin rates with an upper limit of 45 rpm are considered as

unrealistic because of the greatly increased centrifugal loads on deployed

appendages and the appreciable extra spin/despin propellant requirements

for operating in this range and are omitted in the implementation study.*

5.1 MOMENTUM WHEEL ADDITION FOR OPERATION NEAR
ZERO SPIN RATE

Augmentation of the spacecraft angular momentum by addition of an

auxiliary momentum wheel becomes necessary when the body spin rate is to

be reduced below 1.5 rpm as was discussed in Section 3.1. This permits

maintaining the body spin axis within 0.5 degree of the earth line in

spite of external perturbations that occur on close approach to the planet,

as required for effective X-band communication. At zero body spin rate the

momentum wheel provides a substitute for spacecraft spin stabilization so

that a changeover to three-axis attitude control requiring extensive

changes in attitude control electronics and the addition of new attitude

control sensors (or modification of the existing ones) can be avoided.

The addition of a momentum wheel is regarded as a much simpler modification

of the existing Pioneer spacecraft design.

The use of an auxiliary momentum wheel for frequent changes of the

spacecraft spin rate to low values is analogous to the control concept

adopted for the earth-orbiting Atmospheric Explorer Spacecraft C, D and E.

This spacecraft will also operate periodically in a spinning or despun

mode to cater to a variety of scientific objectives, with spin rates

ranging from 8 to 1 rpm. The Explorer spacecraft has sufficient mounting

This change from the initial task definition was agreed on in a discus-
sion on September 14, 1973, with Mr. Ben Padrick of NASA/Ames Research
Center.
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space to accommodate a large (4-foot diameter) lightweight (8-pound)

momentum wheel with an angular momentum capacity of about 60 ft-lb-sec.

This capacity is about one-half of that required to augment Pioneer.

However, in the Pioneer application size and mounting constraints are more

restrictive than in the Explorer spacecraft as dictated by the different

configuration and structure.

5.1.1 Spin Rate Control by Combined Use of
Thrusters and Momentum Wheel

Figure 5-1 is a graph of angular momentum versus body spin rate that

illustrates various modes of combining the use of the existing spin/despin

thrusters and the momentum wheel to exercise spin rate control.

1) Mode A, characterized by line 1-2-3-5, uses only the
momentum wheel, not the thrusters, in the speed range
below the limitwL = 1.5 rpm (point 3) where unaug-
mented operation of the spacecraft would become unsatis-
factory. Body spin rate reduction in the range belowwL
is achieved gradually by spinning up the momentum wheel
to the appropriate spin speed.

2) Mode B (line 1-2-3-4-5) spins up the momentum wheel to
its maximum rate while firing the despin thrusters to
compensate for the momentum change, thus holding the body
spin rate temporarily at the fixed value wL (line 3-4).
Subsequent spin rate changes are performed by thruster
firing, while the momentum wheel maintains runs at
constant spin rate (line 4-5).

3) Mode C (line 1-2-4-5) is similar to Mode B except for
spinning up the momentum wheel gradually over a range
of body speeds (line 2-4)

4) Mode D (line 1-2-3-5 followed by 5-3-6, etc.) relies on
the momentum wheel exclusively to perform all despin and
spinup operations starting at point 3. This point is
reached initially by applying despin thrust.

Of the above methods Mode A appears preferable since the total

momentum wheel running time is held at a minimum and the required momentum

storage capacity can be made smaller than for Mode D. However, a pre-

requisite is the ability of the wheel drive motor to provide controlled

intermediate spin rates. This mode as well as Mode D minimizes the total

number of thruster firings.
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Figure 5-1. Alternate Modes of Using Thrusters and
Momentum Wheel in Combination

The smallest momentum storage capacity in Mode D is obtained if the

spinup and despin portions of the momentum line (5-3-6) are equalized. In

this case the required momentum storage capacity is still 60 percent

greater than for Modes A, B and C. It must also be kept in mind that

Mode D is the only one considered here that requires a reversal of momentum

wheel spin direction at point 3 where line 5-6 crosses the line of com-

bined spacecraft-wheel angular momentum. In general, the momentum wheels

currently available are designed only for unidirectional spin operation.

It would not be practical to employ a momentum wheel for rpm varia-

tions from low to high spin rates (15 rpm) since this would require a wheel

with about five times the storage capacity envisioned only for the low

rpm operations as in Mode A.
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5.1.2 Momentum Wheel Sizing and Placement on
the Pioneer Spacecraft

Figure 5-1 shows that a momentum wheel storage capacity of about

150 ft-lb-sec is required to augment the momentum of the spacecraft proper

in the range from 1.5 rpm to zero body spin rate.

In view of the very restricted choice of possible mounting areas,

and tight weight, size and power constraints the selection and placement

of the wheel assembly must be carefully considered.

For a required momentum storage capacity H w the weight of the wheel

(m w ) increases in inverse proportion with the square of the diameter (D )

and the maximum running speed (Max):

4 H2
MW D 2

Dw Wmax

Momentum wheel characteristics are presented graphically in Fig-

ure 5-2 as a function of wheel momentum and incremental compensated space-

craft spin speed. The required compensated spin speed is the difference

between the minimum spin speed without a wheel and the preferred operating

speed, and will be no more than 1.5 rpm. Data to construct the weight and

power curves was obtained from existing reaction wheel assemblies, with

spin speeds ranging from 1000 to 3000 rpm.

For the small dimensions of possible mounting areas on Pioneer the

wheel would tend to be heavy unless high spin rates of 5000 to 10,000 rpm

are used. Newer momentum wheel designs applying improved bearing tech-

nology provide spin rates in this range.

Characteristics of a representative design (Model 45) by Sperry

Phoenix Division are listed in Table 5-1.

Typical for momentum wheels of this type is the long spin-up period

that is required if the spin-up power level is to be held low. With a

bearing friction of about 1.5 inch-oz and a motor torque of 2.5 inch-oz at

15 watts the net accelerating torque is only 1.0 inch-oz. Doubling the

power level would increase the net accelerating torque by a factor of 3.5
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Figure 5-2. Momentum Wheel Weight and Power

Table 5-1. Characteristics of Sperry Model 45 Momentum Wheel

Storage capacity at 5500 rpm 100 ft-lb-sec
at 8000 rpm 150 ft-lb-sec

Assembly dimensions:
Diameter 15 inches
Height 10 inches

Assembly weight (excluding electrical 30 pounds
components)

Power required for full spin up in 6 hours 15 watts

Steady state sustaining power -9 watts

Minimum operating temperature 70'F
..............................................................

Notes:

* Housing must be vented to space to accommodate outgassing

0 This model has been qualified in accordance with specifi-
cations of a current USAF program (5-year operating life),
but not flown as yet

0 Dormancy for 4 to 5 years in prolonged space missions must
be avoided, i.e., intermittent turn-on is required.
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and reduce the spin-up time correspondingly to 1.7 hours. This would be

preferable so as to reduce loss of observation time on approaching the

planet, if enough power for wheel spin-up can be provided (possibly by

temporary turn-off of unused science sensors). After power cutoff the

bearing friction drives the spin rate to zero in about 4 hours.

Three possible locations for placing the momentum wheel on the

Pioneer spacecraft have been considered and are illustrated schematically

in Figure 5-3. Location 1 is above the equipment platform and permits a

larger diameter (about 36 inches) than the other options, but would require

a cutout in the center of the high-gain antenna dish. Location 2 is inside

POSSIBLE INTERFERENCE
O WITH HIGH GAIN

ANTENNA DISH OR
HYDRAZINE TANK

/ ' ~SIZE LIMITED BY
ADAPTER RING

INTERFERES WITH
PROPULSION STAGE

3OR PROBE MOUNTING
STRUCTURE

Figure 5-3. Mounting Options of Momentum Wheel
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the present (Pioneer F/G) adapter ring which restricts the wheel assembly

outer diameter to about 22 inches. This adapter ring was retained in the

Pioneer outer planets and probe-carrying configuration concepts studied in

References 2 and 3 but omitted in the orbiter configuration (Reference 1).

Location 3, below the adapter ring, would potentially be less restricted

in outer wheel assembly diameter, but this location may interfere with the

propulsion stage structure in the Pioneer orbiter or with the probe

mounting structure used in the Saturn/Uranus probe mission configuration.

At present the second location appears preferable. It can accommodate

the Sperry Model 45 wheel assembly with 20-inch outer diameter, regardless

of whether the adapter ring will or will not be retained in its present

configuration.

Asymmetrical (off-axis) placement of the wheel would be possible,

in principle, but is unattractive because it requires a considerable

redistribution of other equipment to restore mass balance.

5.2 SPIN/DESPIN PROPELLANT REQUIREMENTS

The requirements for repeated spin rate variations during the mis-

sion reflect in an appreciable propellant increment. With an average spin

moment of inertia of 900 slug-ft2 for the Jupiter orbiter, and a maximum

of 20 despin/spin up cycles (40 maneuvers) to low spin rates and 6 spin up/

despin cycles to high spin rate (15 rpm), a total increment of 27.4 pounds

of hydrazine will be required (14.8 pounds for low speed and 12.6 pounds

for high speed operations). This is nearly one-half of the propellant

supply of Pioneer F/G. A total of 6.4 pounds of propellant is saved by

avoiding despin thrust to zero speed, using the momentum wheel augmenta-

tion (in the preferred Mode A) instead. Intermittent momentum wheel

activations required during the cruise phase (see Section 5.1) may con-

sume an additional small amount of despin/spin-up propellant.

The required hydrazine propellant allocation (30 pounds) defined in

the Jupiter Orbiter Study includes propellant for several spin-up maneuvers

to 10 rpm. Thus only about 20 pounds of the total increment stated above

reflect new spin/despin propulsion requirements. This amount can be

accommodated if the 16.5-inch hydrazine tank of the present Pioneer F/G

configuration is retained for orbiter missions.
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The requirement for making AV corrections with a thrust component

normal to the earth line while maintaining the spacecraft in the earth-

pointing mode (as defined in the outer planets Pioneer and Saturn/Uranus

probe mission studies) rather than by axial thrust in the off-earth-

pointing mode requires additional hydrazine propellant which is not

reflected in the propellant weights stated above.

5.3 ADDITION OF SPIN/DESPIN THRUSTERS

The required despin/spin-up thrust operations would involve appre-

ciable precession coupling if only one pair of thrusters were to be used

as in Pioneer F/G. This is due to the z-axis location of the present

spin/despin thruster pair, about 1 foot above the c.g. of the F/G con-

figuration, or 34 inches above the c.g. location of the Jupiter orbiter

configuration at the beginning of life (full tanks), 24 inches above the

c.g. at the end of life (empty tanks).

This coupling effect was already studied in detail for the Jupiter

orbiter configuration, and addition of a second pair of spin/despin

thrusters was necessary in that configuration to provide precession

torque compensation by balancing the unwanted individual torque effects.

Addition of the second spin/despin thruster pair also increases

reliability by adding redundancy in missions where as many as 40 additional

spin/despin maneuvers for low spin rate operation and 12 maneuvers for high

spin rate operation may be required. The total number greatly exceeds the

number of such maneuvers in the Pioneer 10 and 11 mission. The extra

weight for this addition is about 3 pounds.

In the Jupiter orbiter study it was found that the residual unbalance

of the spin/despin thruster pairs (+0.04 lbf) can cause residual precession

coupling with maximum pointing errors of 0.4 and 0.2 degree during spin-

up to 10 rpm and despin to 4.8 rpm, respectively, after nutation decays.

In the proposed Pioneer orbiter configuration a pair of radial hydra-

zine thrusters may also have to be added (for purposes of providing major

off-earth pointing AV maneuver components while the spacecraft is in the

earth-pointing mode (e.g., for planetary orbit inclination changes). These

radial thrusters also can provide precession trim torque pulses to com-

pensate for any residual precession coupling due to spin thruster unbalance.
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This function cannot be exercised by the present AV/precession thrusters

because they generate precession torques around the body x-axis which is

perpendicular to the axis around which a compensation torque is required.

5.4 NUTATION DAMPING

As previously discussed in Section 3, the existing Pioneer F&G nuta-

tion damper provides improved performance, i.e., a shorter time constant,

than was attained on Pioneer F&G (see Figure 3-2), in the modified space-

craft configuration because of the increased tip mass (deployment counter-

weight) on the magnetometer boom. A time constant of approximately five

minutes will be achieved for spin rates of 4.8 rpm or greater. At spin
speeds below 4.8 rpm the time constant increases to approximately 14 min-

utes at 2 rpm.

Should it become necessary to reduce the low-spin-speed time con-

stant, there are several modifications which can be made to the existing

damper, or a second damper tuned to provided optimum performance at low

spin can be added. One simple, but very effective, modification is to
reduce the viscosity of the damping fluid and replace the flexural pivot
with a negative spring having the proper rate to tune the magnetometer
boom to the spacecraft's relative precession rate (see Figure 5-4). Re-
placement of the flexure with a negative spring would involve some develop-
ment work.

PIONEER F/G

BELLOWS
DAMPER

MAGNETOMETER
BOOM

THREE CROSSED WIRES IN
TENSION (2 PLACES)

CYLINDER ATTACHED
TO SPACECRAFT
(2 PLACES)

NEGATIVE SPRING CONCEPT: CROSSED WIRES IN TENSIONCAUSE TORQUE
ACTING IN DIRECTION OF ROTATION

Figure 5-4. Modified Nutation Damper
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The effect of tuning the damper-and-boom combination optimally to

the relative precession rate of the spacecraft was analyzed in the Pioneer

orbiter study and is illustrated in Figure 5-5 for that configuration.

The damper modifications assumed in this case are listed in the legend of

the figure.

5.5 ATTITUDE CONTROL SUBSYSTEM

5.5.1 Modifications for Low Spin Rate Operation

Modifications in the attitude control subsystem are limited to those

functions which the present Pioneer F/G ACS cannot perform properly at low

spin rate but which are essential for achieving the desired scientific

objectives. They are limited essentially to the control electronics assem-

bly and involve roll reference pulse generation and processing.

By restricting the operating modes of the spacecraft at low spin rate

other modifications can be omitted. These include conscan orientation

determination and correction, open-loop precession and nV trim maneuvers,

normally also performed by the ACS.

Roll Reference Signal Generation. In the present Pioneer F&G either

the star reference assembly (SRA) or the sun sensor assembly (SSA) can be

used to provide roll reference pulses. For operation in planetary orbit

where the low spin rate mode is used at close planetary approach the SSA

only gives marginal roll angle determination accuracy since the angle

between the sun line and the spacecraft spin axis is generally quite small.

In close vicinity of the planet both the SSA and SRA may be subject to

malfunctions caused by the strong trapped radiation environment.

As described in the Pioneer orbiter study a search coil magnetometer

will be added as an auxiliary roll reference sensor. In the case of a

Jupiter orbit mission it is anticipated that the magnetometer will generate

a strong signal as far out as 10 planet radii. (This is based on an esti-

mated field strength of 10 gauss at the surface of Jupiter.) Time inter-

vals of 12 hours, as required by the study guidelines, are generally en-

compassed by an orbital segment that falls within this distance. Except

in the rare cases where the magnetic field lines are locally parallel to

the spacecraft spin axis, the relative geometry of the orbital passage
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near the planet generally provides adequate conditions for a magnetic roll

reference pulse pickup. However, the relative orientation of the field

lines changes during the passage and must be accounted for in the inter-

pretation on the ground of roll attitude indexing information of the

science sensors derived from these pulses.

The signals generated alternatively by the SRA, the SSA, or the mag-

netometer are used in the spin period sector generator (SPSG) to generate

roll attitude indexing pulses. At low spin rates any of the sensors (if

still operative) can provide the reference signal. However, the bit stream

from the reference clock runs for much longer periods between sensor-

generated roll reference pulses which is not compatible with the present

SPSG counting and index pulse generation logic. In the modified SPSG a

reference register, a storage register, a comparator and counter will be

added for use during extended clock operation. Several modes of operation

are provided so as to permit SPSG operation for extended spin periods or

for an extended number of spin periods, e.g., averaging accumulated

external roll reference pulses once every 64 periods. A further modifi-

cation is required from that defined for 2 rpm operation mode in the

Jupiter orbiter to accommodate spin periods of 10 minutes and more.

At very small roll rates the roll reference sensors will provide

reference pulses with poor timing accuracy because of the extended dwell

time of the reference source within the detector field of view. However,

the reference pulse angular definition is less strongly degraded since

the product of roll rate and timing error remains essentially invariant.

Control Electronics Assembly. The star time gate circuit of the Pio-

neer F&G control electronics assembly (CEA) has a 6-bit time gate register

and a 6-bit ripple counter. Used in conjunction with the 4 Hz clock rate,

the maximum time gate is 16 seconds, which corresponds to a spin rate of

3.75 rpm. To accommodate a spin rate reduction to 0.1 rpm, both the time

gate register and ripple counter require a 6-bit length increase to 12 bits.

In addition, the transfer gates (between the time gate register and ripple

counter) must be modified accordingly.

The star delay circuit of Pioneer F&G contains a 12-bit delay regis-

ter and 12-bit ripple counter. Counting up in the ripple counter (which
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contains the complement of the delay register) is done at 256 Hz, pro-

viding a maximum delay of 16 seconds, corresponding to the spin rate of

3.75 rpm. Operation at 0.1 rpm requires an increase in the length of the

ripple counter and delay register to 18 bits with a corresponding change

in the number of transfer gates.

The CEA must also be modified to accommodate and control all added

thrusters.

Spin Rate Control Circuit. Spin rate signal processing and control

circuits must be added to the control electronics assembly to permit

accurate control of the maneuver at very low spin rates. The despin sensor

assembly presently used on Pioneer F/G is designed only to signal when the

initial high spin rate has been reduced sufficiently to permit safe RTG

deployment, and is not suitable for adaptation to the new control

requirement.

Conceptually, in this application, the control circuit could operate

by comparing sun or star sensor pulses with pulses from the reference

clock and stop the despin or spin-up process at a commanded clock setting

of clock pulses per revolution. This circuit can be designed to function

both in the low and high rpm range. When the spacecraft is operating in

the momentum wheel augmented mode the magnetic pipper signals available

from the momentum wheel can also be used as an alternative to give indirect

indication of body spin rates, in the range of very low spin rates where

star or sun sensor reference signals deteriorate.

Conscan Signal Processor. This circuit can remain unchanged if

conscan operations are omitted from the low spin rate operating mode.

Precession Control Logic. With precession maneuvers either in con-

scan or open-loop mode excluded from the low spin rate phase, a modifica-

tion of the precession control logic becomes unnecessary. A prerequisite

is the elimination of precession coupling during despin maneuvers by the

use of paired thrusters so that sufficient accuracy of pointing during

the low rpm operating phase is assured (see Section 5.3).
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5.5.2 High Spin Rate Operation

Operation in the high spin rate mode for high thrust engine firing is

limited to even shorter periods than operation at low spin rates. Thus

with the same restrictions on attitude control modes applied as in the low

spin rate condition, no modifications of the attitude control subsystem

appear necessary.

The roll reference sensors are qualified to operate to spin rates of

at least 45 rpm, and no problems in SPSG, star time gate and star delay

operation are anticipated at roll rates of 15 rpm, except some loss in

accuracy due to greater quantization error. Thus, in principle the 15

rpm mode of operation can also be used for scientific observations if

desired.

5.6 OTHER ELECTRICAL SUBSYSTEMS

Data Handling and Storage Subsystems. In principle, the data

handling and storage subsystems are not affected by the addition of a spin

rate variation capability to Pioneer except by their interface with roll

attitude timing and spin period sector indication pulses.

These interfaces are simplified by the elimination of conscan and

precession control operations during the high and low spin rate modes.

Roll attitude indexing for science data remains intact, with outputs of

the modified RAT and SPSG circuits connected to the digital telemetry

unit (DTU) as during the nominal operating mode. The DTU will possibly

require a modification in data formats to support the increased emphasis

on science data (imaging system data) during the low spin rate mode.

The data storage unit (modified for the Pioneer orbiter and other

outer planets missions for other reasons) is not affected by the variable

rpm modes per se.

Modified and Added Command Signals. The addition of high and low

rpm modes and speed control functions, particularly the addition of a

momentum wheel and its control circuits, requires additions and modifica-

tions of the present Pioneer F&G command list and command distribution

logic. Added commands are required for:
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a Turning the momentum wheel on or off (2)

* Enabling or disconnecting the speed control channels for
high and low rpm operations (4)

* Connecting or disconnecting the use of the momentum wheel
speed indicator signal to the speed control channels (2)

* Selecting additional DTU formats (if any) (2-4)

* Miscellaneous mode switching commands, including science
sensor operating mode changes (6).

* Operation of the added thrusters (4).

The total number of added commands is estimated to be about 20. These

can be readily accommodated by the existing command distribution unit,

since less than 190 discrete commands are being implemented on Pioneer F&G

in a system capable of processing up to 255 commands.



6. SUMMARY OF REQUIRED SYSTEM AND SUBSYSTEM MODIFICATIONS

The overall modification requirements of the Pioneer system and sub-

systems for purposes of implementing the high and low spin rate modes are

summarized below, and estimated weight and power requirements are listed.

6.1 MODIFICATIONS

Attitude Control * Addition of momentum wheel assembly

(approximately 20-inch diameter)

Attitude Control Electronics * Addition of control circuits
for momentum wheel

e Addition of spin rate sensing and con-
trol circuits

* Enlargement of register and counter bit

capacity in RAT and SPSG

* Change in SPSG logic

* Change in reference clock signal utili-
zation logic

Attitude Sensors * Sun and star sensor may require adapta-
tion to permit operation at extremely
low spin rates

Propulsion Subsystem * Addition of extra spin/despin thruster
pair and control devices opposite
existing ones (already required in some
other advanced Pioneer design concepts)

* Addition of extra spin-up/despin pro-

pellant (use Pioneer F/G tank)

Command Distribution * Addition of about 20 new commands

(preliminary estimate)

Digital Telemetry Unit * Possibly some format changes to accom-
modate change in science data flow

Science Payload Interfaces * Additional mode switching and control
capabilities required

* Science data roll indexing at very low
spin rates may be degraded (i.e., image
data may be used to augment attitude
interpretation on ground)
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Structure and Fittings * Mounting structure for momentum wheel
added (may require cutout in equipment
platform center)

* Added fittings for extra spin/despin
thruster pair

* Modification of magnetometer mounting
flexure joint as required for improved
nutation damping

6.2 WEIGHT AND POWER ESTIMATES

Weight Power
(pounds) (watts)

Momentum wheel assembly including drive 36 15
motor and control circuits

Added structure and fittings 5

Added spin/despin propellant1  30

Added spin/despin thrusters2  3 (2)3

Modified/added control circuitry 5 5

Total 79 204

Notes:

1 Partly accounted for in previous estimate of spin/despin
control propellant requirement of Jupiter orbiter

2 Already accounted for in Jupiter orbiter

3 Radioisotope heater unit

4 15 watts for 6 hours momentum wheel spin up (30 watts
for 1.7-hour spin up) can be provided by temporary turn-off
of other equipment, e.g., some science sensors.

6.3 CONCLUSION

In summary, the proposed extension of Pioneer operational capabili-

ties by addition of high and low spin rate modes is feasible with some

modification of existing electronic subsystems, addition of control cir-

cuitry and incorporation of a compact 30-pound momentum wheel. Most of

the required modifications (including weight and power increases) are

required to implement the low spin rate mode (below 1.5 rpm). Structural

changes are minimal. Additional study of performance near zero spin rate is

required, especially regarding attitude reference sensor characteristics.
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The total weight increment of about 80 pounds tends to be excessively

large, at least for some missions now being contemplated. A tradeoff is

indicated in this case to select only the most essential modifications,

curtail the number of maneuvers, or limit the low speed operation to rpm

values where the momentum wheel can be omitted. For example, in Saturn

orbiter mission opportunities of the late 70's and early 80's the weight

margin may be tight for a Titan 3E/Centaur/TE 364-4 launch, even if a

relatively eccentric planetary orbit is selected, and a total weight

increment of 80 pounds could not be accommodated. The prospect of launch

by Shuttle/Centaur rather than a Titan class booster will have a strong

influence on the weight and performance margins.
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APPENDIX A

STRUCTURAL LOADS ON APPENDAGES DUE TO COMBINED SPIN
AND THRUST EFFECTS

1. REDUCED BOOM DEFLECTION DUE TO SPIN STIFFENING

The bending deflection of a cantilevered boom (Figure A-1) is

reduced due to the addition of a radial force at the tip mass. Boom mass

is neglected in this analysis. The result is given by

h ho
h1 F h

r o
1+

F L
a

where

ho = deflection of boom in absence of radial force Fr

hI = deflection of boom for radial force Fr -O

Fr, Fa = radial and axial forces applied to tip mass

L = boom length.

SPIN
AXIS

I L

i F
F

Figure A-1. Cantilevered Boom under Axial (Fa) and Radial (Fr ) Load
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Figure A-2 shows the deflection ratio hl/h 0 as function of the

force ratio Fr/Fa with the normalized deflection h /L as parameter. The

tilt angle a of the resulting force at the end mass is given by

a = tan-1 (Fa/Fr)

also indicated at the abscissa of the graph. For Fa/Fr = 5 (or a = 12 de-

grees) the deflection hI is only about 65 percent of h0 if the parameter

h /L is 0.1. For a very flexible appendage (such as the magnetometer

boom) the effect is much more pronounced, with hl/h 0 reduced to about

30 percent at the same force ratio Fa/Fr if h /L = 0.4.

1.0 0

hVL

0.8 -0.2

0.05

0.6 0.1 0.4

h M

0.4 0.2 0.6

0.4

0.2 0.8
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FORCE RATIO F/F

I I I I I I I I
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RESULTANT FORCE INCLINATION a, DEG

Figure A-2. Effect of Spin Stiffening on Tip Deflection and
Maximum Bending Moment of Cantilever Beam
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At 20 rpm the force ratio is about 1/10 for the 10-foot RTG booms

and 1/20 for the 20-foot magnetometer boom, assuming a worst-case axial

acceleration of 0.125 g (100 lbf of thrust, empty tanks).

The non-dimensional expression h1/h0 also appears in the equation

which gives the reduction of the maximum bending moment at the root of

the boom:

M F L - Fr h M ( -

where M1 and M0 designate the moments with and without Fr. A second

scale on the ordinate of Figure B-2 indicates this result. Thus in the

second example above a deflection of 30 percent of ho corresponds to a

reduction of M by 30 percent, i.e., an increase in stiffening due to Fr
reduces the deflection h, which in turn diminishes the effect on the

bending moment.

2. EFFECT ON BUCKLING LOADS ON LOWER RTG GUIDE RODS

In Figure 4-4 (in Section 4) the reduction of the compressive load

in the lower RTG guide rods by the added tensile preload due to Fr was

shown.

The critical buckling load in these rods, assumed as pinned and

clamped at their ends, is expressed by

Pcrit = 272 EJ/L 2

The dimensions of the Pioneer F&G RTG rods are

L = 2060 mm

D = 15.9 mm (outer diameter of tube)

d = 14.5 mm (inner diameter of tube).

Thus J ~ 0.05 (D - d4 ) = 950 mm4 . Assuming E = 7000 kg/mm2 10 psi

for Aluminum 6061 we obtain a critical buckling load of 70 pounds for this

rod. Figure A-3 shows the variation of compressive load with spin rate

for three values of thrust force. The second scale on the ordinate gives

the percentage of critical load. At the nominal spin rate and with 100 lbf
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Figure A-3. Worst Case Net Compressive Load on Lower Pioneer F/G
Guide Rod Due to Axial and Radial Acceleration

of thrust, the rod is loaded to 75 percent of the critical value, at 15 rpm

only to 50 percent. At 25 rpm the compressive load is cancelled by the

tensile load. These results indicate the desirability of spinning up to

15 rpm rather than only 10 rpm, if the Pioneer F&G rod dimensions are used.

The increase in tensile load and stress of the upper RTG rods with

spin rate is illustrated in Figure A-4. Even at 25 rpm this load (and
the resulting stress of 1700 psi) is quite insignificant.

3. BENDING OF RTG BOOM AND GUIDE RODS

The model used to analyze bending effects due to Fa is sketched in

Figure A-5. For simplicity we assume the rods to be pinned at the base

and clamped at the RTG side. The maximum bending stress in each rod in

thiscase is given by

1 FaL
B 3 Z

max
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Figure A-4. Worst Case Net Tensile Load on Upper RTG Guide Rods
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Figure A-5. RTG Boom Bending Model

and would be 37,000 psi if the Pioneer F&G tubular rods with a section

modulus Z = 120 mm3 are used unchanged. Depending on the details of rod

attachment on both ends the maximum stress may actually be considerably

less, e.g., only 18,500 psi with both ends of the rod clamped. To these

stresses a tensile or compressive stress component of 1000 psi corresponding
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to a 15 rpm spin rate must be added. Also, some stress reduction due to
the effect discussed previously is to be anticipated. On the other hand,
the existence of significant buckling loads in the lower rods requires an
adequate safety factor (about 1.5).

Without more detailed analysis it appears that the worst case
stresses are too high for aluminum-rods, and reinforcement by increasing
the wall thickness is to be contemplated. Figure A-6 shows the reduction
of stresses by increasing the wall thickness from the present 0.7 mm to
1.5 mm. The figure also shows the corresponding total weight increment
of the six rods. A 1.5 mm wall thickness is probably more than adequate,
reducing the maximum bending stress to 20,000 or 10,000 psi, respectively,
for the conservative and the less conservative assumptions on rod attach-
ment made here. The total weight increment is only 3 pounds in this case.

40
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Figure A-6. RTG Rod Reinforcement by Increased Tube Wall Thickness
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